The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  1  1  1  1  X  X  X  X  X  X  1  1  1  1  1  1  1  1  X  X  X  X  1  1  1  1  1
 0 X^2+2  0 X^2  0  0 X^2 X^2+2  2  2 X^2+2 X^2  2  2 X^2+2 X^2  2  0 X^2+2 X^2 X^2 X^2  0  0  2  2 X^2+2 X^2+2  2  0 X^2+2 X^2  2  2  0  0 X^2 X^2 X^2+2 X^2+2  0  0  2  2 X^2+2 X^2+2 X^2 X^2  0
 0  0 X^2+2 X^2  2 X^2 X^2+2  2  2 X^2 X^2+2  2  0 X^2+2 X^2  0 X^2 X^2+2  0  2 X^2 X^2+2  0  2  2  0 X^2+2 X^2 X^2+2 X^2  2  0 X^2 X^2+2 X^2+2 X^2 X^2 X^2+2 X^2+2 X^2  0  2  2  0  0  2  2  0  0

generates a code of length 49 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+15x^48+222x^49+15x^50+2x^65+1x^66

The gray image is a code over GF(2) with n=392, k=8 and d=192.
This code was found by Heurico 1.16 in 0.063 seconds.